In [96]:
data <- read.csv("adinda.clean.csv")
In [97]:
head(data)
Out[97]:
In [98]:
tail(data)
Out[98]:
In [99]:
names(data)
Out[99]:
In [103]:
# ncol(data)
dataMean <- data[3:26]
dataMean
Out[103]:
In [101]:
library(stargazer)
In [102]:
summary(data)
Out[102]:
In [62]:
library("ggplot2")
In [63]:
qplot( y = data$TOBINQ, x = data$SIZE)
In [66]:
library("plm")
In [104]:
data_panel <- pdata.frame(data, index = c("Firm", "Year"), drop.index = TRUE, row.names = TRUE)
In [105]:
head(data_panel)
Out[105]:
In [69]:
tabel2_reg1 <- plm(CEI ~ BRD_INDP + BRD_MEET + BRD_SIZE + BRD_COMPT, data = data_panel, model = "within" )
tabel2_reg2 <- plm(CEI ~ BRD_INDP + BRD_MEET + BRD_SIZE + BRD_COMPT + LOSS + TOT_ASSETS + SLACK + ROE , data = data_panel, model = "within" )
tabel2_reg3 <- plm(BRIB_CORR ~ BRD_INDP + BRD_MEET + BRD_SIZE + BRD_COMPT + LOSS + TOT_ASSETS + SLACK + ROE , data = data_panel, model = "within" )
tabel2_reg4 <- plm(BUSS_ETH ~ BRD_INDP + BRD_MEET + BRD_SIZE + BRD_COMPT + LOSS + TOT_ASSETS + SLACK + ROE , data = data_panel, model = "within" )
tabel2_reg5 <- plm(FAIR_COMP ~ BRD_INDP + BRD_MEET + BRD_SIZE + BRD_COMPT + LOSS + TOT_ASSETS + SLACK + ROE , data = data_panel, model = "within" )
tabel2_reg6 <- plm(POL_CONTR ~ BRD_INDP + BRD_MEET + BRD_SIZE + BRD_COMPT + LOSS + TOT_ASSETS + SLACK + ROE , data = data_panel, model = "within" )
tabel2_reg7 <- plm(INDIG_PPL ~ BRD_INDP + BRD_MEET + BRD_SIZE + BRD_COMPT + LOSS + TOT_ASSETS + SLACK + ROE , data = data_panel, model = "within" )
tabel2_reg8 <- plm(IND_EC_IMP ~ BRD_INDP + BRD_MEET + BRD_SIZE + BRD_COMPT + LOSS + TOT_ASSETS + SLACK + ROE , data = data_panel, model = "within" )
tabel2_reg9 <- plm(X0TH_ENG ~ BRD_INDP + BRD_MEET + BRD_SIZE + BRD_COMPT + LOSS + TOT_ASSETS + SLACK + ROE , data = data_panel, model = "within" )
In [ ]:
In [70]:
library(lmtest)
summary(tabel2_reg2)
In [71]:
tabel3_reg2 <- plm(CEI ~ BRD_INDP + BRD_MEET + BRD_SIZE + BRD_COMPT + DIVIDEND + LOSS + TOT_ASSETS + SLACK + ROE , data = data_panel, model = "within" )
tabel3_reg2 <- plm(CEI ~ BRD_INDP + BRD_MEET + BRD_SIZE + BRD_COMPT + DIVIDEND + BRD_INDP_DIV + LOSS + TOT_ASSETS + SLACK + ROE , data = data_panel, model = "within" )
tabel3_reg3 <- plm(CEI ~ BRD_INDP + BRD_MEET + BRD_SIZE + BRD_COMPT + DIVIDEND + BRD_MEET_DIV +LOSS + TOT_ASSETS + SLACK + ROE , data = data_panel, model = "within" )
tabel3_reg4 <- plm(CEI ~ BRD_INDP + BRD_MEET + BRD_SIZE + BRD_COMPT + DIVIDEND + BRD_SIZE_DIV +LOSS + TOT_ASSETS + SLACK + ROE , data = data_panel, model = "within" )
tabel3_reg5 <- plm(CEI ~ BRD_INDP + BRD_MEET + BRD_SIZE + BRD_COMPT + DIVIDEND + BRD_COMPT_DIV +LOSS + TOT_ASSETS + SLACK + ROE , data = data_panel, model = "within" )
In [72]:
# tabel3_reg51 <- plm(CEI ~ BRD_INDP + BRD_MEET + BRD_SIZE + BRD_COMPT + DIVIDEND + BRD_COMPT_DIV +LOSS + TOT_ASSETS + SLACK + ROE , data = data_panel, model = "within",
# vcovHC = c(type = c("HC0", "HC1", "HC2", "HC3", "HC4"),
# cluster = c("group","time"),
# diagonal = FALSE ))
# summary(tabel3_reg51)
robust1 <- coeftest(tabel2_reg2, vcov=function(x) vcovHC(x, method="arellano",
type="HC1", cluster="group"))
robust2 <- coeftest(tabel2_reg3, vcov=function(x) vcovHC(x, method="arellano",
type="HC1", cluster="group"))
In [73]:
summary(tabel3_reg5)
In [74]:
names(data)
Out[74]:
In [75]:
vcovHC(tabel2_reg2 , method = c("arellano", "white1", "white2"),
type = c("HC0", "HC1", "HC2", "HC3", "HC4"),
cluster = c("group","time"))
In [ ]:
tabel4_reg1 <- plm(CEI ~ BRD_EFFC + DIVIDEND + LOSS + TOT_ASSETS + SLACK + ROE, data = data_panel, model = "within" )
tabel4_reg2 <- plm(ALT_CEI ~ BRD_EFFC + DIVIDEND + LOSS + TOT_ASSETS + SLACK + ROE, data = data_panel, data = data_panel, model = "within" )
tabel4_reg3 <- plm(CEI ~ BRD_EFFC + DIVIDEND + BRD_EFFC_DIV + LOSS + TOT_ASSETS + SLACK + ROE, data = data_panel, model = "within" )
tabel4_reg4 <- plm(ALT_CEI ~ BRD_EFFC + DIVIDEND + BRD_EFFC_DIV + LOSS + TOT_ASSETS + SLACK + ROE, data = data_panel, model = "within" )
tabel4_reg5 <- plm(CEI ~ BRD_INDP + BRD_MEET + BRD_SIZE + BRD_COMPT, data = data_panel, model = "within" )
tabel4_reg6 <- plm(CEI ~ BRD_INDP + BRD_MEET + BRD_SIZE + BRD_COMPT, data = data_panel, model = "within" )
In [76]:
skripsi.fe <- plm(TOBINQ ~ PDEBT + LogAssets + LEV + LIQ + INTCOV + PROF + DR + GROWTH + FIRMAGE, data = data_panel, model = "within")
skripsi.re <- plm(TOBINQ ~ PDEBT + LogAssets + LEV + LIQ + INTCOV + PROF + DR + GROWTH + FIRMAGE, data = data_panel, model = "random")
In [77]:
summary(skripsi.fe)
In [78]:
summary(skripsi.re)
In [79]:
phtest( skripsi.fe, skripsi.re)
In [80]:
pooltest.billy <- pooltest(TOBINQ ~ PDEBT + FIRMAGE + LIQ, data = data_panel, model="within")
In [81]:
pooltest.billy
In [82]:
pool_rergression <- plm(TOBINQ ~ PDEBT + SIZE + LEV + LIQ + INTCOV + PROF + DR + GROWTH + FIRMAGE, data = data_panel, model="pooling")
bpagan_test <- plmtest(pool_rergression,effect="twoways",type="bp")
In [83]:
bpagan_test
In [84]:
summary(skripsi.fe)
In [85]:
summary(data_panel)
Out[85]:
In [86]:
qplot(y = data$LogTobinsQ, x = data$LIQ, geom = c("point", "smooth"), method = lm)
In [87]:
var(data$LIQ)
In [88]:
var(data$TOBINQ)
In [89]:
qplot(data$TOBINQ)
In [90]:
skripsi.try1 <- plm(log(TOBINQ) ~ PDEBT + log(SIZE) + log(LEV) + log(LIQ) + log(INTCOV) + log(PROF) + DR + log(GROWTH) + FIRMAGE + y1 + y2 + y3 , data = data_panel, model = "within")
In [91]:
summary(skripsi.try1)
In [92]:
install.packages("R2wd")
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]: